Cheeger constants, growth and spectrum of locally tessellating planar graphs

نویسندگان

  • Matthias Keller
  • Norbert Peyerimhoff
چکیده

In this article, we study relations between the local geometry of planar graphs (combinatorial curvature) and global geometric invariants, namely the Cheeger constants and the exponential growth. We also discuss spectral applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric and spectral properties of locally tessellating planar graphs

In this article, we derive bounds for values of the global geometry of locally tessellating planar graphs, namely, the Cheeger constant and exponential growth, in terms of combinatorial curvatures. We also discuss spectral implications for the Laplacians.

متن کامل

Lower Bounds on the Cheeger Constants of Highly Connected Regular Graphs

We develop a method for obtaining lower bounds on the Cheeger constants of certain highly connected graphs. We then apply this technique to obtain new lower bounds on the Cheeger constants of two important families of graphs. Finally, we discuss the relevance of our bounds to determining the integrity of these graphs.

متن کامل

Cheeger constants, structural balance, and spectral clustering analysis for signed graphs

We introduce a family of multi-way Cheeger-type constants {h k , k = 1, 2, . . . , N} on a signed graph Γ = (G, σ) such that h k = 0 if and only if Γ has k balanced connected components. These constants are switching invariant and bring together in a unified viewpoint a number of important graph-theoretical concepts, including the classical Cheeger constant, the non-bipartiteness parameter of D...

متن کامل

Isoperimetric Numbers of Regular Graphs of High Degree with Applications to Arithmetic Riemann Surfaces

We derive upper and lower bounds on the isoperimetric numbers and bisection widths of a large class of regular graphs of high degree. Our methods are combinatorial and do not require a knowledge of the eigenvalue spectrum. We apply these bounds to random regular graphs of high degree and the Platonic graphs over the rings Zn. In the latter case we show that these graphs are generally nonRamanuj...

متن کامل

On the Asymptotic Isoperimetric Constants for Riemann Surfaces and Graphs

We study the behavior of the Cheeger isoperimetric constant on infinite families of graphs and Riemann surfaces, and its relationship to the first eigenvalue λ1 of the Laplacian. We adapt probabilistic arguments of Bollobás to the setting of Riemann surfaces, and then show that Cheeger constants of the modular surfaces are uniformly bounded from above away from the maximum value. We extend this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009